A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using 18F-FMISO-PET
نویسندگان
چکیده
Glioblastoma multiforme (GBM) is a highly invasive primary brain tumour that has poor prognosis despite aggressive treatment. A hallmark of these tumours is diffuse invasion into the surrounding brain, necessitating a multi-modal treatment approach, including surgery, radiation and chemotherapy. We have previously demonstrated the ability of our model to predict radiographic response immediately following radiation therapy in individual GBM patients using a simplified geometry of the brain and theoretical radiation dose. Using only two pre-treatment magnetic resonance imaging scans, we calculate net rates of proliferation and invasion as well as radiation sensitivity for a patient's disease. Here, we present the application of our clinically targeted modelling approach to a single glioblastoma patient as a demonstration of our method. We apply our model in the full three-dimensional architecture of the brain to quantify the effects of regional resistance to radiation owing to hypoxia in vivo determined by [(18)F]-fluoromisonidazole positron emission tomography (FMISO-PET) and the patient-specific three-dimensional radiation treatment plan. Incorporation of hypoxia into our model with FMISO-PET increases the model-data agreement by an order of magnitude. This improvement was robust to our definition of hypoxia or the degree of radiation resistance quantified with the FMISO-PET image and our computational model, respectively. This work demonstrates a useful application of patient-specific modelling in personalized medicine and how mathematical modelling has the potential to unify multi-modality imaging and radiation treatment planning.
منابع مشابه
Addendum to 'A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using 18F-FMISO-PET'.
Department of Neurological Surgery, Northwestern University and Feinberg School of Medicine, 676 N Saint Clair Street, Suite 1300, Chicago, IL 60611, USA Northwestern Brain Tumor Institute, Northwestern University, 675 N Saint Clair Street, Suite 2100, Chicago, IL 60611, USA, Department of Radiation Oncology, Department of Pathology, Department of Neurology, and Department of Radiology, Univers...
متن کاملThe role of necrosis, acute hypoxia and chronic hypoxia in 18F-FMISO PET image contrast: a computational modelling study
Positron emission tomography (PET) using 18F-fluoromisonidazole (FMISO) is a promising technique for imaging tumour hypoxia, and a potential target for radiotherapy dose-painting. However, the relationship between FMISO uptake and oxygen partial pressure ([Formula: see text]) is yet to be quantified fully. Tissue oxygenation varies over distances much smaller than clinical PET resolution (<100 ...
متن کاملA Comparative Study of Noninvasive Hypoxia Imaging with 18F-Fluoroerythronitroimidazole and 18F-Fluoromisonidazole PET/CT in Patients with Lung Cancer
PURPOSE This is a clinical study to compare noninvasive hypoxia imaging using 18F-fluoroerythronitroimidazole (18F-FETNIM) and 18F-fluoromisonidazole (18F-FMISO) positron emission tomography/computed tomography (PET/CT) in patients with inoperable stages III-IV lung cancer. METHODS A total of forty-two patients with inoperable stages III-IV lung cancer underwent 18F-FETNIM PET/CT (n = 18) and...
متن کامل[18F]fluoromisonidazole and a new PET system with semiconductor detectors and a depth of interaction system for intensity modulated radiation therapy for nasopharyngeal cancer.
PURPOSE The impact of a new type of positron emission tomography (New PET) with semiconductor detectors using 18F-labeled fluoromisonidazole (FMISO)-guided intensity modulated radiation therapy (IMRT) was compared with a state-of-the-art PET/computed tomography (PET/CT) system in nasopharyngeal cancer (NPC) patients. METHODS AND MATERIALS Twenty-four patients with non-NPC malignant tumors (co...
متن کاملReproducibility of 18F-fluoromisonidazole intratumour distribution in non-small cell lung cancer
BACKGROUND Hypoxic tumours exhibit increased resistance to radiation, chemical, and immune therapies. 18F-fluoromisonidazole (FMISO) positron emission tomography (PET) is a non-invasive, quantitative imaging technique used to evaluate the presence and spatial distribution of tumour hypoxia. To facilitate the use of FMISO PET for identification of individuals likely to benefit from hypoxia-targe...
متن کامل